Holland Park Calculation Policy

This document is broken down into five sections - early years, addition, subtraction, multiplication and division.
The methods used will be used across the school in the appropriate age groups but earlier methods can be revisited, especially if a child is finding a new concept difficult or is not working at the same level as the rest of the class. Resources used within lessons are carefully selected to ensure a deep understanding of the methods being taught and should be used to enhance the teaching of formal abstract methods.

Early Years

Year Group	Explanation	Models used to support learning
R	ELG: Number Children at the expected level of development will: - Have a deep understanding of number to 10 , including the composition of each number; - Subitise (recognise quantities without counting) up to 5 ; - Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts. ELG: Numerical Patterns Children at the expected level of development will: - Verbally count beyond 20 , recognising the pattern of the counting system; - Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity; - Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally.	

Addition

Year Group	Explanation	Models used to support learning
1	Add 1 digit numbers within 10. When adding numbers to 10 , children can explore both aggregation (joining two or more groups together) and augmentation (adding on from a given number). The use of part-whole model, continuous bar models, numicon, tens frames and bead strings will all be used to develop understanding in a concrete and pictorial manner before moving onto abstract models.	

$1 \& 2\left(\begin{array}{l}\text { Add } 1 \text { and } 2 \text { digit numbers to } 20 \\ \begin{array}{l}\text { The importance of ten ones equalling one ten will be highlighted } \\ \text { when teaching adding to 20. Groups of straws will be used to } \\ \text { demonstrate this in a concrete way before moving on to pictorial } \\ \text { and finally abstract methods. } \\ \text { A range of manipulatives will be used to represent this exchange. } \\ \text { These concrete resources will be used alongside number lines } \\ \text { and abstract recording methods to develop understanding about } \\ \text { how to partition their jumps. }\end{array}\end{array}\right.$

$5 \& 64$| Add with up to 3 decimal places |
| :--- |
| Column addition will be the main choice for these calculations. |
| Place value counters on a place value grid will be used as the |
| most effective manipulative for this element of the curriculum. |
| Children will use manipulatives alongside the recording of their |
| work in columns. They will also be supported to view these |
| calculations in real-life contexts such as when using money. |
| When using the column method, the addition symbol will be
 written on the left hand side of the calculation (as in the diagram
 opposite) and exchanged digits will be represented below the
 line. |

Subtraction

Year	Explanation	Models used to support learning
1	Subtract 1 digit numbers within 10 Children will predominantly use concrete resources when introducing subtracting. Numicon, multilink, bead strings and tens frames will be used to support understanding of these key principles. Alongside this, number lines, bar models and part whole models will be used as pictorial representations of the calculations being completed. Children will also be shown and begin to record the abstract calculation .	$7-3=4$

$1 \& 22$| Subtract 1 and 2 digit numbers to 20 |
| :--- |
| It is vital ensure children understand the importance of ten ones |
| equalling one ten. Straws will be used to reinforce this idea. |
| Numicaon, tens frames, numberlines, bar models and part-whole
 models will also be used to support understanding of the concept
 of subtraction. |

$5 \& 6$

Multiplication

Year	Explanation	Models to support learning
1 \& 2	Solve on-step problems with multiplication Multiplication will be represented as repeated addition in a range of different ways. Both concrete and pictorial representations will be used to solve problems. At this stage, children will not be expected to record multiplication formally. In Year 2 children will be introduced to the multiplication symbol.	

$3 \& 4$	Multiply 2-digit by 1 digit numbers
Formal recording methods will be introduced during Years 3 and	

When using the expanded or short multiplication methods, the multiplication symbol will be written on the left hand side of the calculation (as in the diagram opposite) and exchanged digits will be represented below the line.

In Year 4, Place value counters and Base ten should also be used to support understanding (as opposed to supporting the method) as children should, by now, be fluent with their times tables knowledge.

5
 Multiply 4-digit by 1 -digit numbers

By now the only manipulative used should be place value counters. Children should, instead, be using the short method for calculations

When using the short multiplication method, the multiplication symbol will be written on the left hand side of the calculation (as in the diagram opposite) and exchanged digits will be represented below the line.

Where children are finding that their times tables are holding them back with their understanding of the method, times tables grids may be used to support learning however, interventions will be put in place to support the ongoing development of times tables knowledge.

$1,826 \times 3=5,478$

$5 \quad$ Multiply 3 digit numbers by 2 digit numbers
The area model and associated grid method can continue to be used to aid understanding of the size of the numbers involved when multiplying a 3 digit number by a 2 digit number.

Long multiplication should be introduced quickly as the accepted formal method and children should be confident in its use by the end of Year 5.

When using the long multiplication method, the multiplication symbol will be written on the left hand side of the calculation (as in the diagram opposite) and exchanged digits will be represented below the line.
$234 \times 32=7,488$

\times	200	30	4
30	6,000	900	120
2	400	60	8

Division

Year	Explanation	Models to support learning
1 \& 2	Solve one-step problems with division (sharing) Problems will be solved by sharing amounts into equal groups. In Year 1, children use concrete and pictorial representations to solve problems - they do not record division formally. In Year 2, children are introduced to the division symbol and will begin to record their calculations formally.	

$1 \& 2$	Solve one-step problems with division (grouping)
Children will solve problems by grouping and counting the number	
of groups. This encourages counting in multiples and links with	
repeated subtraction on a number line.	
Concrete representations in fixed groups (such as numicon) shows	
the link between multiplication and division.	
In Year 2 formal recording of the calculation will take place.	

4 \& 5 \quad| Divide 2 digits by 1 digit (grouping) |
| :--- |
| $\left.\begin{array}{l}\text { The short division method is first introduced in Year 4 (the correct } \\ \text { title of short division must be used at all times and not 'the bus } \\ \text { stop method'). } \\ \text { Models using concrete resources should start with the largest } \\ \text { place value being grouped by the divisor. Teachers should use } \\ \text { the correct terms of divisor, dividend and quotient when modelling } \\ \text { this method to the class. } \\ \begin{array}{l}\text { Language use is key when modelling this method. Phrases such } \\ \text { as 'How many groups of 4 tens can we make?' and How many } \\ \text { groups of 4 ones can we make?' to ensure that children } \\ \text { understand they are working with tens and ones. } \\ \text { When modelling short division the division bracket should be } \\ \text { modelled clearly as a short vertical line between the divisor and } \\ \text { the dividend joining onto the horizontal vinculum (the line above } \\ \text { the dividend and below the quotient). Exchanged digits should be } \\ \text { shown clearly to the left of the digit they are joining. }\end{array}\end{array}\right)$ |

Divide 4 digits by 1 digit (grouping)

Children should be confidently using the short method when in Year 5. Although concrete resources (place value counters) and pictorial representations may still be used to support understanding. As the year progresses all children should move away from the use of concrete resources as thei confidence grows and as the complexity of the calculations evolve (for example where multiple exchanges are required).

When modelling short division the division bracket should be modelled clearly as a short vertical line between the divisor and the dividend joining onto the horizontal vinculum (the line above the dividend and below the quotient). Exchanged digits should be shown clearly to the left of the digit they are joining.

$$
8,532 \div 2=4,266
$$

Divide multi-digits by 2 digits (long division)

Once short division of 4 digit numbers by a 2 digit number has been mastered, long division will be taught. CHildren should be encouraged to use this method where exchange of large numbers occurs.

Children should be encouraged to write multiple lists for the divisor to help with the efficiency of the calculation.

When modelling long division the division bracket should be modelled clearly as a short vertical line between the divisor and the dividend joining onto the horizontal vinculum (the line above the dividend and below the quotient). Exchanged digits should be

$432 \div 12=36$
$7,335 \div 15=489$ shown clearly to the left of the digit they are joining. Where numbers are 'brought down' within the calculation this can be modelled through a simple arrow, although the should eventually be removed as the children grow in confidence.

